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We have evaluated a universal ratio between diffusion constants of the ring polymer with a given knot K and
a linear polymer with the same molecular weight in solution through the Brownian dynamics under hydrody-
namic interaction. The ratio is found to be constant with respect to the number of monomers, N, and hence the
estimate at some N should be valid practically over a wide range of N for various polymer models. Interest-
ingly, the ratio is determined by the average crossing number �NAC� of an ideal conformation of knotted curve
K, i.e., that of the ideal knot. The NAC of ideal knots should therefore be fundamental in the dynamics of knots.
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I. INTRODUCTION

Novel knotted structures of polymers have recently been
found in various research fields such as DNA, proteins, and
synthetic polymers �1–4�. The topology of a ring polymer is
conserved under thermal fluctuations in solution and repre-
sented by a knot �5–9�. Topological constraints may lead to
nontrivial statistical mechanical and dynamical properties of
ring polymers �6,10–19�.

Recent progress in experiments of ring polymers should
be quite remarkable. Diffusion constants of linear, relaxed
circular, and supercoiled DNAs have been measured quite
accurately �20�. Here the DNA double helices are unknotted.
Furthermore, hydrodynamic radius of circular DNA has also
been measured �21�. Ring polymers of large molecular
weights are synthesized not only quite effectively �22� but
also with small dispersions and of high purity �23,24�. Cir-
cular DNAs with various knot types are derived, and they are
separated into knotted species by gel electrophoresis �25�.
We should remark that synthetic ring polymers with non-
trivial knots have not been synthesized and separated experi-
mentally, yet. However, it is highly expected that ring poly-
mers of nontrivial knot types should be synthesized and their
topological effects will be confirmed experimentally in near
future.

In the paper we discuss diffusion constant DK of a ring
polymer with fixed topology K in good solution for various
knot types. We evaluate it numerically via the Brownian dy-
namics with hydrodynamic interaction in which bond cross-
ing is effectively prohibited through the finite extensible non-
linear elongational �FENE� potential �26�. We evaluate
diffusion constant DL of a linear polymer with the same mo-
lecular weight and derive ratio DK /DL. The ratio should cor-
respond to a universal amplitude ratio of critical phenomena
and play a significant role in the dynamics of knotted ring
polymers. According to the renormalization-group �RG� ar-
guments, ratio DK /DL should be universal if the number of
monomers, N, is large enough �27–29�.

The ratio DK /DL may have some experimental applica-
tions. Ring polymers of different knot types can be separated

experimentally with respect to their topologies by making
use of the difference among the sedimentation coefficients,
which can be calculated from the diffusion constants �30�.
Here we remark that the diffusion constant of a ring polymer
under no topological constraint, DR, and that of the corre-
sponding linear polymer has been numerically evaluated, and
the ratio C=DR /DL has been studied �26,31,32�.

Through simulation we find that ratio DK /DL is approxi-
mately constant with respect to N for various knots. Thus, if
we evaluate ratio DK /DL at some value of N, it is practically
valid for other values of N. We can therefore predict the
diffusion constant DK of a polymer model at some value of
N, multiplying the ratio DK /DL by the estimate of DL. Here
we remark that the value of DL may depend on the number N
and on some details of the model �33,34�.

Furthermore, we show numerically that ratio DK /DL is a
linear function of the average crossing number �NAC� of the
ideal knot of K, an ideal configuration of knotted curve K,
which will be defined shortly. Since the ratio DK /DL is al-
most independent of N, it follows that the linear fitting for-
mula should be valid practically in a wide range of finite
values of N. Thus, the ideal knot of a knotted curve K should
play a fundamental role in the dynamics of finite-size knotted
ring polymers in solution.

Let us introduce the ideal knot, briefly. For a given knot K
it is given by the trajectory that allows maximal radial ex-
pansion of a virtual tube of uniform diameter centered
around the axial trajectory of the knot K �35,36�. We define
the NAC of a knotted curve as follows: we take its projection
onto a plane and enumerate the number of crossings in the
knot diagram on the plane. Then, we consider a large number
of projections onto planes whose normal vectors are uni-
formly distributed on the sphere of unit radius and take the
average of the crossing number �NAC� over all the normal
directions.

The paper consists of the following: in Sec. II, the simu-
lation method is explained. In Sec. III, we present the esti-
mates of the diffusion constant of a ring polymer in solution
of knot type K for various knot types. Then, we show nu-
merically that the graph of DK /D0 is almost independent of
N and also that ratio DK /DL is fitted by a linear function of
NAC of the ideal knot of K. We also discuss the simulation
result in terms of the ratio of equivalent radii �37�, aG /aT,
which corresponds to the universal ratio of the radius of gy-
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ration to the hydrodynamic radius �33�. We shall define the
equivalent radii explicitly in Sec. III. Finally, we give con-
clusion in Sec. IV.

Throughout the paper, we employ the symbols of knots
following Rolfsen’s textbook �38�, as shown in Fig. 1.

II. SIMULATION METHOD

The ring polymer is modeled as a cyclic bead-and-spring
chain with N beads connected by N FENE springs with force
given by

F�r� = − Hr/�1 − r2/rmax
2 � , �1�

where r= �r�. We denote by b the unit of distance, which
gives the average distance between neighboring monomers
approximately. We set constants H and rmax by H
=30kBT /b2 and rmax=1.3b. We assume the Lennard-Jones
�LJ� potential by

V�rij� = 4�LJ���LJ/rij�12 − ��LJ/rij�6� . �2�

Here rij is the distance of beads i and j, and �LJ and �LJ
denote the minimum energy and the zero energy distance,
respectively �39�. We set the Lennard-Jones parameters as
�LJ=0.8b and �LJ=0.1kBT so that they give good solvent
conditions �40�. Here kB denotes the Boltzmann constant.

We employ the predictor-corrector version �41� of the
Ermak-McCammon algorithm for generating time evolution
of a ring polymer in solution. The hydrodynamic interaction
is taken into account through the Rotne-Prager-Yamakawa

tensor �39,42,43� where the bead friction is given by �
=6��sa with the bead radius a=0.257b and a dimensionless
hydrodynamic interaction parameter h�= �� /6��s��H /�kBT
=0.25.

In the present simulation, physical quantities are given in
dimensionless units such as in Ref. �39�. We divide length by
b, energy by kBT, and time by �b2 /kBT. Let us indicate di-
mensionless quantities by an asterisk as superscript. We have
H�=30 and rmax

� =1.3. We take the simulation time step �t�

=10−4.
We have set the FENE potential so that the topology of

the ring polymer should be effectively conserved �26�. How-
ever, bond crossing may occur with very small probability.
Calculating knot invariants, we have confirmed that the frac-
tion of nontrivial knots is very small. If the initial knot type
is the trivial knot it is given by 10−8–10−7, and if the initial
knot type is a nontrivial knot, it is given by approximately
10−7.

III. SIMULATION RESULTS

We define the diffusion constant of a polymer by

D = lim
t→�

1

6t
	�r�G�t� − r�G�0��2
 . �3�

Here r�G�t� denotes the position vector of the center of mass
of the polymer at time t. Making use of Eq. �3� we have
evaluated diffusion constants DL and DK.

The estimates of diffusion constants DL and DK at N
=45 are listed in Table I together with those of the mean-
square radius of gyration 	RG

2 
. The data of DL and DK are
plotted against N in Fig. 2. The fitting curves to them are
given by D=aN−	�1+bN−��. Here the errors of the diffusion
constants are as small as 10−4.

Ratios DK /DL should correspond to universal amplitude
ratios in critical phenomena. Numerically we find that ratio
DK1

/DK2
of two different knots K1 and K2 is almost constant

with respect to N, at least in the range investigated. For in-
stance, the graph of ratio D31

/D0 versus N and that of ratio
D41

/D0 versus N for the data are almost flat, as shown in
Figs. 3 and 4, respectively. Here 0, 31, and 41 denote the

linear

(a)

01

(b)

31

(c)

41

(d)

51

(e)

52

(f)

61

(g)

62

(h)

71

(i)

FIG. 1. Figures of a linear polymer and knotted ring polymers
with the symbols of knots given in Rolfsen’s textbook �38�. They
are drawn by using OCTA �http://octa.jp�.

TABLE I. Estimates of diffusion constants DL and DK and the
mean-square radius of gyration 	RG

2 
 and for a linear polymer of
N=45 and ring polymers of N=45 with various knot types.

Knot type D 	RG
2 


Linear 0.12038
0.00085 9.33029
0.03219

0 0.13059
0.00089 5.26539
0.00913

31 0.14530
0.00079 3.21052
0.00505

41 0.14876
0.00074 2.78817
0.00160

51 0.15277
0.00085 2.72300
0.00261

52 0.15640
0.00078 2.61427
0.00132

61 0.15927
0.00078 2.47449
0.00137

62 0.15902
0.00095 2.37272
0.00126

71 0.16416
0.00083 2.47162
0.00109
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trivial, the trefoil, and the figure-eight knot, respectively, as
shown in Fig. 1. The numerical values of D31

/D0 are given
from 1.14 to 1.17 in Fig. 3, and those of D41

/D0 are given
from 1.14 to 1.21 in Fig. 4. Thus, the estimate of DK /D0
evaluated at a value of N, say N=45, for some knot K should
also be valid at other finite values of N since it is almost
independent of N.

For the diffusion constant of a ring polymer, DR, the ratio
DR /DL should correspond to a universal amplitude ratio and
should be universal if N is large enough �27–29�. For the
diffusion constant DR, there is no topological constraint in
the ring polymer model and DR does not mean DK of a knot
K �26,31,32�. In the previous simulation �26� it has been
found that ratio D0 /DL is given by about 1.1 for the present
polymer model and almost independent of N within the range
investigated.

From the numerical observations and the RG arguments,
we have two conjectures: �a� D0 /DL should be given by 1.1

for some wide range of finite values of N and also in the
large N limit; �b� ratio DK /D0 for a nontrivial knot K should
remain almost the same value in a wide range of finite values
of N, i.e., the N dependence should be very small.

Quite interestingly we find that ratio DK /DL can be ap-
proximated by a linear function of the average crossing num-
ber �NAC� of ideal knots, i.e., the ideal representations of the
corresponding knots. In Fig. 5 simulation data of DK /DL are
plotted against NAC of ideal knots. We find that the data
points are fitted well by the following empirical formula:

DK/DL = a + bNAC. �4�

Here, the estimates of a and b are given in the caption of Fig.
5. Thus, the diffusion constant DK of a knot K can be esti-
mated in terms of the NAC of the ideal knot of K.

Let us discuss the �2 values. We have �2=2 for the fitting
line of Fig. 5, which is for the data of N=45. For the data of
N=36 we have a good fitting line with �2=3. The estimates
of a and b for N=36 are similar to those for N=45. Thus, we
may conclude that the graph of DK /DL versus NAC is fitted
by a linear line.
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FIG. 2. Diffusion constants of linear and knotted ring chains
with knots 0, 31, 41, 51, 61, and 71 versus N. Fitted by D=aN−	�1
+bN−�� with the following best estimates: For a linear chain, a
=0.90
0.23, 	=0.53
0.06, b=0.51
0.93, �=1.14
2.39, and
�2=17; for the trivial knot �0�, a=1.03
1.11, 	=0.55
0.18, b
=0.14
0.78, �=0.60
6.09, and �2=28; for the trefoil knot �31�,
a=1.00
3.87, 	=0.52
0.67, b=1.18
1.12, �=0.77
6.09, and
�2=27.
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FIG. 3. Ratio D31
/D0 of diffusion constants for the trefoil knot

�31� and the trivial knot �0� versus the number of segments N.
Fitting curve is given by D31

/D0=a�1+bN−c�, where a
=1.07
0.64, b=0.25
0.39, and c=0.39
3.29 with �2=6.

0

0.5

1

1.5

2

20 25 30 35 40 45 50

D
/D

N

4
0

1

FIG. 4. Ratio D41
/D0 of diffusion constants for the figure-eight

knot �41� and the trivial knot �0� versus the number of segments N.
Fitting curve is given by D41

/D0=a�1+bN−c�, where a
=1.02
0.56, b=1.76
8.26, and c=0.70
2.58 with �2=0.03.
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FIG. 5. DK /DL versus the average crossing number �NAC� of

ideal knot K for N=45: The data are approximated by DK /DL=a
+bNAC, where a=1.11
0.02 and b=0.0215
0.0003 with �2=2.

UNIVERSALITY IN THE DIFFUSION OF KNOTS PHYSICAL REVIEW E 79, 021806 �2009�

021806-3



For a finite value of N, we can estimate the diffusion
constant DK of a knot K through formula �4� by the NAC of
the ideal knot of K. Here we have assumed that coefficients a
and b of Eq. �4� are independent of N since the graphs of
DK /D0 and D0 /DL are almost flat with respect to N. In fact,
there is almost no numerical support for suggesting a pos-
sible N dependence of a and b, directly.

We thus summarize the simulation results so far as fol-
lows: ratio DK /D0 for a knot K should be almost constant
with respect to N in a wide range of N and can be expressed
by the linear function of NAC of ideal knots. Equation �4�
should be useful in separating synthetic ring polymers into
various knotted species by making use of the difference
among sedimentation coefficients.

Ideal knots should play a fundamental role in the dynam-
ics of knotted ring polymers in solution. In fact, we have
shown it for the diffusion constants. In experiments of gel
electrophoresis drift velocities of different knots formed on
the same DNA molecules were shown to be simply related to
the NAC of ideal knots �25�. The two independent results
suggest the importance of the NAC of ideal knots in the dy-
namics of knotted ring polymers although the physical situ-
ations are different.

Let us now discuss the simulation results from the view-
point of equivalent radii �37�. The equivalent radius for any
solution property is the radius of a spherical particle having
the same value of solution property as that of the macromol-
ecule under consideration. The ratio of equivalent radii
should be universal, and it should play a similar role as the
universal amplitude ratio such as the ratio of diffusion con-
stants �33�. We define equivalent radii aG and aT explicitly
by

aG =�5

3
	RG

2 
 , �5�

aT =
kBT

6��sD
. �6�

Here aG and aT correspond to the radius of gyration RG

=�	RG
2 
 and the translational friction coefficient D, respec-

tively. The ratio aG /aT corresponds to the ratio of the radius

of gyration to the hydrodynamic radius and should be uni-
versal.

The numerical estimates of aG /aT for N=45 for the
present simulation are listed in Table II for linear and ring
polymers with various knot types. In Fig. 6, the ratio aG /aT
is plotted against the number of segments, N, for linear and
ring polymers with various knot types. Interestingly, the
graphs show a weak N dependence. They are fitted by a
function aG /aT=a�1−bN−c�, with parameters a, b, and c be-
ing positive. It suggests that the graphs become constant with
respect to N if N is large enough. We thus expect that the
ratio aG /aT in the large N limit should be universal.

It is interesting to note in Fig. 6 that the estimate of ratio
aG /aT in the large N limit is distinct for the different topolo-
gies such as linear polymers and ring polymers of the trivial
and trefoil knots. The ratio could thus be useful for detecting
the knot type of a ring polymer in solution.

IV. CONCLUSION

We have evaluated universal ratios among the diffusion
constants of knotted ring polymers in good solution for sev-
eral knots, where bond crossing is effectively prohibited in
the Brownian dynamics under hydrodynamic interaction.
The universal ratio of diffusion constants DK /DL is almost
constant with respect to the number of polymer segments, N.
Moreover, it is found that the ratio DK /DL is determined by
the NAC of the ideal knot of K. Through the linear relation,
we can estimate the diffusion constant of a given knot.
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TABLE II. Estimates of ratio aG /aT=�5	RG
2�
 /3D� /a� for a lin-

ear polymer of N=45 and ring polymers of N=45 with various knot
types. Here, 	RG

2�
= 	RG
2 
 /b2, D�=6��saD /kBT, and a�=a /b.

Knot type aG /aT

Linear 1.8471
0.00475

0 1.5053
0.01869

31 1.3079
0.01151

41 1.20824
0.00055

51 1.26636
0.00077

52 1.27029
0.00052

61 1.25865
0.00084

62 1.23046
0.00058

71 1.29643
0.00050

0.5

1

1.5

2

2.5

0 10 20 30 40 50

linear
0

a
/a

N

G
T

31

FIG. 6. aG /aT of linear and knotted ring chains with knots 0, 31,
41, 51, 61, and 71 versus N. Fitted by aG /aT=a�1−bN−c� with the
following best estimates: For a linear chain, a=2.37
0.29, b
=0.52
0.03, c=0.22
0.10, and �2=55; for the trivial knot �0�,
a=1.51
0.03, b=0.72
0.23, c=0.89
0.22, and �2=14; for the
trefoil knot �31�, a=1.30
0.03, b=2.10
3.71, c=1.27
0.76, and
�2=20.
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